CABS-dock standalone application for protein-peptide docking with large-scale flexibility of the protein receptor

Maciej Paweł Ciemny¹,2, Tymoteusz Oleniecki¹,3,4, Mateusz Kurcinski¹, Maciej Błaszczyk¹, Paulina H. Marek¹,2, Andrzej Kolinski¹, Sebastian Kmiecik¹

¹Biological and Chemical Research Centre, Faculty of Chemistry, University of Warsaw, Żwirki i Wigury 101, 02-089 Warsaw, Poland
²Faculty of Physics, University of Warsaw, ul. Pasteura 5, 02-093 Warszawa, Poland
³College of Inter-Faculty Individual Studies in Mathematics and Natural Sciences, University of Warsaw, Banacha 2C, 02-097 Warszawa, Poland
⁴Mossakowski Medical Research Centre Polish Academy of Sciences, Pawińskiego 5, 02-106 Warszawa, Poland
⁵Faculty of Chemistry, Warsaw University of Technology, Noakowskiego 3, 00-664 Warsaw, Poland

Protein-peptide interactions may involve large-scale conformational changes of a target protein which are challenging to study both experimentally or computationally[1]. Here we present a new standalone application based on CABS coarse-grained protein model for flexible protein-peptide docking – the CABS-dock[2-4], so far available as a web server[4]. The method performs a blind global search for a binding site combined with an on-the-fly folding of a fully flexible peptide, while the target protein backbone fluctuates around its input conformation (in the default mode). Additionally, users can extend the degree of conformational flexibility of a protein receptor (for chosen regions) and enable large-scale conformational changes. That was the case of the modeling of the MDM2/p53 complex, modeled using CABS-dock with full flexibility of the intrinsically disordered regions of significant length[1]. The obtained CABS-dock results for MDM2/p53 system matched well the experimental data and provided new insights into the possible role of unstructured receptor regions. The standalone CABS-dock application allows for customization of the simulation parameters, providing constraints for user selected protein-peptide contacts, handing large-sized systems and provides a flexible framework for result analysis. CABS-dock is available as a standalone application at http://biocomp.chem.uw.edu.pl/CABSdockApp/ and as a web server at: http://biocomp.chem.uw.edu.pl/CABSdock.

Acknowledgements: MP Ciemny acknowledges financial support by Faculty of Physics, University of Warsaw (BST-176600/BF).